Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zofia Olejnik, ${ }^{\text {a* }}$ Tadeusz Lis, ${ }^{\text {a }}$

 Iveta Ondrejkovičová, ${ }^{\text {b }}$ Jozef Malo ${ }^{\text {b }}$ and Sylvia Galkováb${ }^{\text {a }}$ Faculty of Chemistry, University of Wrocław, 14 Joliot-Curie St, 50-383 Wrocław, Poland, and ${ }^{\text {b }}$ Department of Inorganic Chemistry, Slovak Technical University, Radlinského 9, 81237 Bratislava, Slovakia

Correspondence e-mail:
olej@wchuwr.chem.uni.wroc.pl

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
Disorder in main residue
R factor $=0.047$
$w R$ factor $=0.114$
Data-to-parameter ratio $=24.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
mer-Tris(ethyldiphenylphosphine oxide)tris(isothiocyanato)iron(III)

The title compound, $\left[\mathrm{Fe}(\mathrm{NCS})_{3}\left(\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{OP}\right)_{3}\right]$, adopts a meridional coordination of the three NCS^{-}ligands and three OPEtPh_{2} ligands. The $\mathrm{Fe}-\mathrm{N}$ and $\mathrm{Fe}-\mathrm{O}$ bond lengths fall in the range 1.982 (2) -2.045 (2) \AA, and the bond angles around the Fe^{3+} centre deviate only slightly from an ideal octahedral geometry. The three OPEtPh_{2} ligands have similar geometries to each other and adopt the same general conformation with differences in the relative orientations of the phenyl groups. The NCS^{-}ligands are almost linear and the $\mathrm{Fe}-\mathrm{N}-\mathrm{C}$ angles range from 170.78 (17) to 177.56 (17) ${ }^{\circ}$. In contrast, the $\mathrm{Fe}-$ $\mathrm{O}-\mathrm{P}$ angles show a great variation with two angles close to 180° [166.29 (10) and $171.21(10)^{\circ}$] and the angles corresponding to a disordered OPEtPh_{2} ligand far from 180° [137.0 (10) and $\left.137.9(5)^{\circ}\right]$. Both the disorder and the variations in the angles around the N and O atoms seem to result from weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ interactions.

Comment

The structure of the title compound, (I), is shown below. Dimensions are listed in Table 1.

(I)

Unlike fac-tris(isothiocyanato)tris(triphenylphosphine oxide)iron(III) (Olejnik et al., 1995), the title compound, $\left[\mathrm{Fe}(\mathrm{NCS})_{3}\left(\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{OP}\right)_{3}\right]$, adopts a meridional coordination of the three NCS^{-}ligands and three OPEtPh_{2} ligands. The Fe N and $\mathrm{Fe}-\mathrm{O}$ bond lengths fall in the range 1.982 (2)2.045 (2) \AA, and the bond angles around the Fe^{3+} centre deviate only slightly from an ideal octahedral geometry. The three OPEtPh_{2} ligands have similar geometries to each other and adopt the same general conformation with differences in the relative orientations of the phenyl groups. The NCS ${ }^{-}$ ligands are almost linear and the $\mathrm{Fe}-\mathrm{N}-\mathrm{C}$ angles range from 170.78 (17) to $177.56(17)^{\circ}$. In contrast, the $\mathrm{Fe}-\mathrm{O}-\mathrm{P}$ angles show a great variation with two angles close to 180° [166.29 (10) and $171.21(10)^{\circ}$] and the angles corresponding to a disordered OPEtPh_{2} ligand far from 180° [137.0 (10) and $\left.137.9(5)^{\circ}\right]$. Both the disorder and the variations in the angles around the N and O atoms seem to result from weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ interactions (Table 2).

Received 5 September 2005 Accepted 10 October 2005 Online 19 October 2005

Experimental

The title compound was obtained in two steps. First, an acetonitrile solution of $\mathrm{Fe}(\mathrm{SCN})_{3}$ was prepared by mixing acetonitrile solutions of $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and KSCN in stoichiometric amounts; the insoluble KCl formed during the reaction was filtered off. An acetonitrile solution $(10 \mathrm{ml})$ of ethyldiphenylphosphine oxide $(0.690 \mathrm{~g}, 3.00 \mathrm{mmol})$ was then added to the acetonitrile solution $(30 \mathrm{ml})$ of $\mathrm{Fe}(\mathrm{SCN})_{3}$ $(1.00 \mathrm{mmol})$ and the mixture was refluxed. After cooling, dark-red crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation.

Crystal data

$\left[\mathrm{Fe}(\mathrm{NCS})_{3}\left(\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{OP}\right)_{3}\right]$
$M_{r}=920.78$
Monoclinic, $P 2_{1} / c$
$a=14.565$ (3) A
$b=16.839$ (3) \AA
$c=20.092$ (4) \AA
$\beta=110.47(3)^{\circ}$
$V=4616.6(18) \AA^{3}$
$Z=4$
$D_{x}=1.325 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 27191
\quad reflections
$\theta=4.5-30.0^{\circ}$
$\mu=0.61 \mathrm{~mm}^{-1}$
$T=100(2) \mathrm{K}$
Plate, dark red
$0.25 \times 0.25 \times 0.10 \mathrm{~mm}$

Data collection
Kuma KM-4 CCD κ-geometry diffractometer
ω scans
Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2003), analytical numeric absorption using a multifaceted crystal model based on expressions derived by Clark \& Reid (1995)]

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.114$
$S=1.01$
13417 reflections
555 parameters

Figure 1
The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The H atoms and the minor disorder component have been omitted for clarity.

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 131-\mathrm{H} 134 \cdots \mathrm{~S}^{2}$	0.99	2.77	$3.64(3)$	146
$\mathrm{C} 321-\mathrm{H} 321 \cdots 3^{\mathrm{i}}$	0.95	2.73	$3.632(12)$	158
$\mathrm{C} 19-\mathrm{H} 192 \cdots \mathrm{~S} 3^{\mathrm{ii}}$	0.99	2.86	$3.848(2)$	177
$\mathrm{C} 47-\mathrm{H} 47 \cdots \mathrm{~S}^{\mathrm{iii}}$	0.95	2.83	$3.707(2)$	154
$\mathrm{C} 16-\mathrm{H} 162 \cdots \mathrm{~S}^{\mathrm{iv}}$	0.99	2.80	$3.754(2)$	163

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $-x+2,-y+1,-z+1$;
(iii)
$-x+2, y+\frac{1}{2},-z+\frac{3}{2}$; (iv) $x,-y+\frac{3}{2}, z-\frac{1}{2}$.

The C atoms of one phenyl group attached to atom P1 of the ethyldiphenylphosphine oxide ligand exhibited extremely prolate displacement ellipsoids, and the displacement parameters of atom P1 and the C atoms of the ethyl substituent were larger than those of the two other ligands. This apparent disorder was modelled by splitting the phenyl (C12-C62) and ethyl (C13, C23) groups and atom P1 over two sets of positions, giving refined occupancies of 0.653 (12) for one component and 0.337 (12) for the other component (atoms C121C621, C131, C231 and P11). The disordered groups were refined with geometrical similarity restraints (Sheldrick, 1997). The anisotropic displacement parameters of the atom pairs from the two components were constrained to be identical. Finally, $U^{i j}$ parameters for C12 and C121 were restrained to approximate an isotropic behaviour. H atoms were positioned geometrically and treated as riding on their carrier atom, with $\mathrm{C}-\mathrm{H}$ distances constrained to 0.95 (aromatic CH), $0.99\left(\right.$ methylene $\left.\mathrm{CH}_{2}\right)$ or $0.98 \AA\left(\right.$ methyl $\left.\mathrm{CH}_{3}\right)$, and with $U_{\text {iso }}(\mathrm{H})$ values equal to $1.5 U_{\text {eq }}($ carrier C$)$ for methyl groups and $1.2 U_{\text {eq }}$ (carrier C) for the remaining H atoms.

Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis RED (Oxford Diffraction, 2003); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Bruker, 1998); software used to prepare material for publication: SHELXL97.

metal-organic papers

References

Bruker (1998). XP. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Clark, R. C. \& Reid, J. S. (1995). Acta Cryst. A51, 887-897.
Olejnik, Z., Lis, T. \& Ondrejkovičová, I. (1995). Acta Cryst. C51, 2246-2249.

Oxford Diffraction (2003). KM-4 CCD Software, including CrysAlis CCD and CrysAlis RED. Versions 1.171. Oxford Diffraction Poland, Wrocław, Poland.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

